Virtual Memory is a space where large programs can store themselves in form of pages while their execution and only the required pages or portions of processes are loaded into the main memory. This technique is useful as large virtual memory is provided for user programs when a very small physical memory is there.
In real scenarios, most processes never need all their pages at once, for following reasons :
The basic idea behind demand paging is that when a process is swapped in, its pages are not swapped in all at once. Rather they are swapped in only when the process needs them(On demand). This is termed as lazy swapper, although a pager is a more accurate term.
Initially only those pages are loaded which will be required the process immediately.
The pages that are not moved into the memory, are marked as invalid in the page table. For an invalid entry the rest of the table is empty. In case of pages that are loaded in the memory, they are marked as valid along with the information about where to find the swapped out page.
When the process requires any of the page that is not loaded into the memory, a page fault trap is triggered and following steps are followed,
There are cases when no pages are loaded into the memory initially, pages are only loaded when demanded by the process by generating page faults. This is called Pure Demand Paging.
The only major issue with Demand Paging is, after a new page is loaded, the process starts execution from the beginning. Its is not a big issue for small programs, but for larger programs it affects performance drastically.
As studied in Demand Paging, only certain pages of a process are loaded initially into the memory. This allows us to get more number of processes into the memory at the same time. but what happens when a process requests for more pages and no free memory is available to bring them in. Following steps can be taken to deal with this problem :
Below is a video, which will explain LRU Page replacement algorithm in details with an example.
A process that is spending more time paging than executing is said to be thrashing. In other words it means, that the process doesn't have enough frames to hold all the pages for its execution, so it is swapping pages in and out very frequently to keep executing. Sometimes, the pages which will be required in the near future have to be swapped out.
Initially when the CPU utilization is low, the process scheduling mechanism, to increase the level of multiprogramming loads multiple processes into the memory at the same time, allocating a limited amount of frames to each process. As the memory fills up, process starts to spend a lot of time for the required pages to be swapped in, again leading to low CPU utilization because most of the proccesses are waiting for pages. Hence the scheduler loads more processes to increase CPU utilization, as this continues at a point of time the complete system comes to a stop.
To prevent thrashing we must provide processes with as many frames as they really need "right now".
/operating-system/virtual-memory